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Abstract
We propose a model for non-ideal monitoring of the state of a coupled quantum
dot qubit by a quantum tunnelling device. The non-ideality is modelled
using an equivalent measurement circuit. This allows realistically available
measurement results to be related to the state of the quantum system (qubit).
We present a quantum trajectory that describes the stochastic evolution of the
qubit state conditioned by tunnelling events (i.e. current) through the device.
We calculate and compare the noise power spectra of the current in an ideal
and a non-ideal measurement. The results show that when the two qubit dots
are strongly coupled the non-ideal measurement cannot detect the qubit state
precisely. The limitation of the ideal model for describing a realistic system
may be estimated from the noise spectra.

1. Introduction

For a quantum computer to be practical, one of the important questions is how to read out the
final results of the quantum computation reliably. Measurement of the state of qubits, the two-
state systems, at a single-electron level is essential for a solid-state quantum computer [1].
Most proposals for the measurement of quantum systems are idealized [2–4]. However,
in a real laboratory a perfect measurement is hardly possible due to practical devices and
circuitry. We try to model imperfect measurements so that realistically available results can
be related to the state of the quantum system (in this case, a solid-state qubit). Quantum point
contacts (QPCs) [5, 6] and single-electron transistors (SETs) [2, 3, 7] are popular quantum
tunnelling (QT) devices in proposals for measurement of coupled-dot systems. Here we study
continuous monitoring of the state of a pair of coupled quantum dots by a QT device. We include
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the case of imperfect (non-ideal) measurement. The pair of dots, occupied by a single electron
tunnelling coherently between them, acts as a qubit [8, 9].

Fluctuations in time of a measurement can be a source of information that may be
difficult or impossible to directly probe by measurement of time-averaged quantities. Current
fluctuations due to the discreteness of the electrical charge play a diagnostic role similar to
that in photon measurements. However, the correlations between electrons due to the Pauli
principle introduce extra features of quantum noise in mesoscopic systems based on the system
states and reflected in the noise spectrum [10]. In this study we use the current noise spectrum
to obtain information about the quantum processes within the coupled dots.

The paper is organized as follows. The details of the system are described in section 2.
The formalism is presented in section 3, where we present a quantum trajectory that describes
the stochastic evolution of the qubit state when measured by a QT device. In section 4 we
show and analyse the calculated results and compare the noise spectra of measured current for
the cases of ideal and non-ideal measurement. We summarize our results in section 5. We find
that noise as an informative signal in mesoscopic systems indeed provides information about
the qubit state and a non-ideal measurement fails to obtain information about the quantum
processes occurring within the qubit when the two dots are strongly coupled. The limitations
of the modelling with an ideal device, estimated from the noise power spectra, are discussed.

2. Description of the measurement and system

The quantum system to be measured is a pair of spatially separated and coherently coupled
quantum dots occupied by a single electron. Each dot is assumed to have only one available
state. The interaction between the QT device and the nearer dot is via a Coulomb interaction.
The state of the qubit at a particular time is described by the location of the confined electron
at that time. The electron tunnelling rate through the measurement device is affected by the
location of the qubit electron: when the electron occupies the further dot 2 the rate is denoted
by λ0, while an additional rate λ1 (>0) occurs when the electron is in the nearer dot 1. Hence
the QT device operates as a measurement device to detect the state of the qubit. The quiescent
tunnelling rate λ0 is usually nonzero due to Johnson–Nyquist noise and other factors such as
defects in the device.

This model is based on that of [2] which considered a SET with an adiabatically eliminated
island dot. When the quiescent rate of tunnelling through the device is negligible (λ0 � λ1),
this model is equivalent to that of a low transparency QPC [6].

In the case of ideal measurement, the current through the QT device involves only
tunnelling events that reflect the qubit’s state. In this case, the only noise present is the
quantum noise due to the stochastic nature of the tunnelling processes through the QT
device. However, for non-ideal measurement of the qubit state, the measured current includes
extra noise components. The extra noise is caused by classical noise sources from the real
measurement components. We use an equivalent circuit to model the realistic measurement as
shown in figure 1. The circuit is structured in three parts: the QT device, a current amplifier
and miscellaneous circuit components. The QT device tunnel junction is represented by a
capacitance, C1, in parallel with a parasitic capacitance, CP, that exists between the source
and drain 2DEGs. The parasitic capacitance CP is generally larger than the junction capacitance
C1 due to its larger ‘area’. In the formalism, we consider the equivalent parallel capacitance
C = C1 + CP. The DC bias voltage consists of an ideal electromotive force, ε, in series with
an input noise voltage source ei, which includes the Johnson–Nyquist noise of the equivalent
resistance Ri. (These circuit components introduce an input noise into the current through the
QT device.) The current through the QPC is amplified by a non-ideal current amplifier. This is
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Figure 1. Equivalent circuit for measurement of current through the QT device. The single tunnel
junction in the QT device is modelled as a capacitor C1. A parasitic capacitance, CP, between the
source and drain is included in parallel with the QT device. Tunnelling events through the device
are modelled as a current source.

modelled as an ammeter that contributes an output noise eo/Ro to the measured current I (t),
where Ro is the resistance associated with the non-ideal amplifier, which is at temperature
To ∼ 4 K. Tunnelling events through the QT device are modelled as a current source. The
detailed description of the measured current at time t , I (t), including effects of the realistic
components, is expressed in the second part of the following section.

3. Theoretical modelling and stochastic approach

First we present the formalism in the ideal measurement case. The total Hamiltonian of the
qubit dots can be expressed as

H = h̄
2∑

j=1

ω j c
†
j c j + ih̄

�

2
(c†

1c2 − c†
2c1), (1)

where � is the coupling frequency between the two dots and c j and c†
j ( j = 1, 2) are the

annihilation and creation operators for the single-electron states within the qubit dots. The
first and second terms of the right-hand side of equation (1) are the quasi-bound-state energies
and the interaction between the two dots, respectively. The average dynamics of the qubit are
described by the following unconditional quantum master equation [2]:

dρ(t)

dt
= −i[H, ρ(t)] + γD[n1]ρ(t)

≡ Lρ(t), (2)

where γ = 2λ0 + λ1 is the decoherence rate of the qubit [2], λ0 and λ1 are the tunnelling rates
introduced in the previous section, n1 = c†

1c1 is the occupation number of dot 1 and L is the
Liouvillian super-operator. The super-operator D[X]Y is defined by

D[X]Y ≡ J [X]Y − A[X]Y

= XY X† − 1
2 (X† XY + Y X† X). (3)

Note that the convention of h̄ = 1 is chosen here. The master equation, being of the
Lindblad form [11] for valid evolution (that is, preserving the hermiticity, norm and positivity
of ρ), was derived in the appendix of [2] for a SET with an adiabatically eliminated island dot.
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In the limit of λ0 � λ1, the model is equivalent to that of a low transparency QPC in [6].
In both cases, the QT device considered has a single junction through which electrons must
tunnel.

We define the ideal current through the QT device in terms of the discrete Poissonian
process dN(t):

i(t) = q
dN(t)

dt
, (4)

where q = −|q| is the charge on an electron. The classical point process dN(t) is defined by
the conditions

dN(t)2 = dN(t), (5)

E

[
dN(t)

dt

]
= λ0 Tr[(1 − n1)ρc(t)(1 − n1)] + (λ0 + λ1) Tr[n1ρc(t)n1]

= λ0 + λ1〈n1〉c(t). (6)

Here E[X] denotes the expectation value of the quantity X . Notice that the (classical)
expectation value has been expressed as a quantum average. The conditions indicate that
dN(t) equals zero or one and that the rate of the tunnelling events through the QT device is
equal to the background rate plus an additional rate λ1 if and only if the electron is in dot 1.

The quantum trajectory (stochastic master equation) for the case of ideal measurement
is [2]

dρc = dN

[ F
Tr[Fρc]

− 1

]
ρc + dt{−λ1A[n1]ρc + λ1Tr[ρcn1]ρc − i[H, ρc]}, (7)

where the super-operator F is defined as Fρc ≡ λ0ρc + λ1J [n1]ρc + 2λ0D[n1]ρc, the super-
operators J and A were defined implicitly by equation (3) and time arguments have been
omitted for simplicity. The expectation value of dN(t) can therefore be expressed in terms of
F as

E

[
dN(t)

dt

]
= Tr[Fρc(t)]. (8)

The subscript c indicates that the stochastic evolution of the state matrix is conditioned on
tunnelling events through the QT device at earlier times. Averaging the quantum trajectory
over the observed stochastic processes recovers the unconditional master equation (2).

Using Kirchhoff’s laws to analyse the equivalent circuit of figure 1, we obtain the Itô
differential equation [12] for the charge on the parasitic capacitor, Q(t), and the expression
for the (non-ideal) measured current.

The Itô differential equation for Q(t) is

dQ(t) = [−αQ(t) + β] dt +
√

Di dWi(t) + q dN(t), (9)

where dWi(t) is the input noise Wiener process [12], α = 1/RiC , β = ε/Ri, Di = 2kBTi/Ri,
Ti is the laboratory temperature and kB is Boltzmann’s constant. The positive sign on the
tunnelling increment is due to our definition of the direction of the current in the circuit.

Our circuit analysis yielded the following expression for the measured current as a function
of time:

I (t) = −αQ(t) + β +
√

Di
dWi(t)

dt
+

√
Do

dWo(t)

dt
, (10)

where Do = 2kBTo/Ro, To is the amplifier temperature and dWo(t) is the output noise Wiener
increment due to the amplifier.
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It is straightforward to find the solution of equation (9) as

Q(t) = β

α
+

√
Die

−αt
∫ t

−∞
eαt1

dWi(t1)

dt1
dt1 + qe−αt

∫ t

−∞
eαt1

dN(t1)

dt1
dt1. (11)

The current is therefore given by substitution of equation (11) into (10):

I (t) = −α
√

Die−αt
∫ t

−∞
eαt1

dWi(t1)

dt1
dt1 − αqe−αt

∫ t

−∞
eαt1

dN(t1)

dt1
dt1

+
√

Di
dWi(t)

dt
+

√
Do

dWo(t)

dt
. (12)

One may argue that the current I (t), rather than the point process dN/dt , is measured in
a real experiment. It is indeed true that the realistic conditional state of the system would
be conditioned upon I (t). This can be realized by following the method introduced for
photodetectors in [13] and [14]. The result is a stochastic Fokker–Planck equation for ρc(Q),
where Tr[ρc(Q)] is the conditional probability that the charge on the capacitor is Q, and∫

dQρc(Q) is the conditional quantum state, averaged over the unobserved charge Q. The
details of this equation and its derivation will be presented elsewhere.

In case it is not obvious, we use i(t) to denote an ideal current (consisting only of tunnelling
events through the detector) and I (t) to denote a non-ideal current that contains extra noise
introduced by the realistic measurement circuit.

4. Current noise spectra

For the noise involved in the detection of qubit states by a QT device, two types of noise
are considered in this study: Johnson–Nyquist noise due to thermal motion of electrons that
does not provide quantum information and shot noise due to the discreteness of the charge
of electrons. In the steady state as well as many practical situations, when electron pulse
widths are less than 1/ω, Johnson noise is white noise which has a flat power spectrum. The
current noise spectrum is given by SJohnson = 4kBT/R, where T is the absolute temperature
of the conductor and R is the conductor resistance. This noise therefore provides only the
temperature value and no information about the quantum states.

In (single) tunnel junction devices the transfer of electrons can be described by Poisson
statistics and the shot noise has its maximum value Sshot = 2q Im ≡ SPoisson, where Im is
the time-averaged mean current through the device. The shot noise can be suppressed below
SPoisson by correlations due to the Pauli exclusion principle and is a source of information
on the quantum system involved in the measurement [10, 15]. Noise is characterized by its
power-density spectrum S(ω), which is the Fourier transform of the current–current two-time
autocorrelation function [16], G(τ ):

G(τ ) = 〈I (t)I (t + τ )〉ss − 〈I (t)〉ss〈I (t + τ )〉ss, (13)

where I (t) represents the current through the QPC as a function of time and the subscript ss
denotes the steady state. The noise spectrum is expressible as [17]

S(ω) = 4
∫ ∞

0
G(τ ) cos(ωτ) dτ. (14)

We use dimensionless parameters, normalizing S(ω) by the full shot noise level 2q Im to
produce what is known as the Fano factor [18]

F(ω) = S(ω)

2q Im
, (15)
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Figure 2. Fano factor plots for ideal measurement of the current for different values of the tunnel
coupling between qubit dots: (a) � = 0.1γ , (b) � = 0.6γ , (c) � = 3γ .

where the time averaged mean current Im in the non-ideal (ideal) case is the steady-state current
Iss (iss). The steady-state currents in the ideal and non-ideal cases are equal in magnitude:
Iss = −iss = −qE[dN(t)]/dt .

In the ideal measurement case the noise is purely due to the stochastic nature of the
quantum processes. The current tunnelling through the QT device in this case is described by
equation (4) and the following steady-state autocorrelation function can be obtained using the
definition (13):

G(τ ) = qissδ(τ ) +
q2λ2

1

8

(
b+eb−τ − b−eb+τ√

(γ /4)2 − �2

)
, (16)

where

b± = −γ /4 ±
√

(γ /4)2 − �2 (17)

are two (possibly complex) numbers. The Fourier transform of G(τ ) gives the noise spectrum:

S(ω) = 2qiss +
q2λ2

1�
2

2
√

(γ /4)2 − �2

[
1

b2
+ + ω2

− 1

b2− + ω2

]
. (18)

This result is equivalent to results obtained by other methods in [19] (when the detector
temperature is zero4) and [20] (for zero relaxation rate5).

We plot the noise spectra (as a Fano factor plot) for the case of ideal measurement in
figure 2 for three different values of � corresponding to the cases of (a) weak, (b) intermediate
and (c) strong coupling between the two dots, respectively. The double-peaked structure

4 The apparent differences between our equation (18) and (32) of [19] disappear when one substitutes T = 0 and
uses the same notation by replacing γ with γ/2 and �I with qλ1 in their equation.
5 Our result agrees with that of equation (14) in [20] to within a factor of two when one substitutes �r = 0 and uses
the same notation by replacing � with 2�0 and qλ1 with �I in our equation. We speculate that the discrepancy of a
factor of two is due to a different choice of definition for the spectrum.
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Figure 3. Fano factor plot for non-ideal measurement of the current when the coupling between
the qubit dots is relatively strong: � = 3γ . The values of RiC are given in the plots.

indicates coherent tunnelling between the qubit dots. The separation of the peaks is a measure
of the strength of the tunnel coupling—larger separation corresponds to stronger coherence in
tunnelling between the qubit dots [2, 15].

The measured current in the non-ideal circuit is more complicated, as shown in
equation (10). The corresponding two-time correlation function and noise spectrum are
calculated as the following equations:

G(τ ) = q Issδ(τ ) + Doδ(τ ) + Di

(
δ(τ ) − α

2
e−ατ

)

+
α2q2λ2

1

8
√

(γ /4)2 − �2

{
b+

α2 − b2−
eb−τ − b−

α2 − b2
+

eb+τ

+

(
b+

α2 − b2−
− b−

α2 − b2
+

+
b−

α(α + b+)
− b+

α(α + b−)

)
e−ατ

}
(19)

S(ω) = 2q Iss + 2Do + 2Di

(
1 − α2

α2 + ω2

)

+
q2λ2

1�
2

2
√

(γ /4)2 − �2

[
1

b2
+ + ω2

− 1

b2− + ω2

](
α2

α2 + ω2

)
. (20)

Again, to catch and compare the corresponding quantum features, we visualize the
characteristics by plotting the noise spectra in the non-ideal measurement case for various
parameters. Figures 3–5 correspond to strong, intermediate and weak coupling strength
between the qubit dots, respectively. For comparison with the ideal case, the coupling strengths
� between the qubit dots in figures 3, 4 and 5 are chosen as the same values as for figures 2(c), (b)
and (a), respectively.

The influence of the non-ideal circuit components on the noise spectra is most significant
in the strong coupling case as shown in figure 3 where � = 3γ . From the top to the bottom,
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Figure 4. Fano factor plot for non-ideal measurement of the current when the coupling rate between
the qubit dots is an intermediate value: � = 0.6γ . The values of RiC are given in the plots.

Figure 5. Fano factor plots for non-ideal measurement of the current when the coupling between
the qubit dots is weak: � = 0.1γ . The values of RiC are given in the plots.

the parasitic parameters decrease by two orders. The top plot corresponds to the parasitic
components of Ri = 100 � and C = 10 pF, which are from the literature [21]. The sharp
peaks in the noise spectrum of the ideal measurement are suppressed into small bumps here due
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to the imperfect measurement circuit, and the original spectral features that provide qubit-state
information are almost lost. As the parasitic capacitance is decreased (the lower two plots) in
figure 3, the original features of the ideal noise spectrum in figure 2(c) are gradually recovered.

Figure 4 represents the intermediate tunnel coupling strength between the qubit dots
(� = 0.6γ ). It shows a weaker influence of the non-ideal circuit components on the features
of the noise spectrum. For comparison, the values of the parasitic components are the same as
in figure 3. The filter shape (the wings in the spectrum) remains identical, but the peaks are
not suppressed by as much as for the stronger coupling case. The peaks showing the coupling
strength between the qubit dots are easily visible for all three values of RiC . That is, for
intermediate coupling strength between the qubit dots (� � γ /4), information about the qubit
state can be obtained by non-ideal measurement (provided RiC < 10−9 s).

The noise spectra for weak coupling between the qubit dots, shown in figure 5, are very
close to the spectrum in the ideal case in figure 2(a). So, for weak inter-dot coupling, the
non-ideal circuit components have a negligible influence on the qubit-state information that is
written in the features of the measured current noise spectrum.

We draw the conclusion that the noise spectrum therefore acts as a diagnostic tool that can
be used to estimate whether a measurement device of known parameters can be modelled as
ideal or whether the dynamics of the quantum system can be detected by such a device/circuit.

5. Summary

We have analysed the measurement of the dynamics of a coupled quantum dot (qubit) system
by a QT device using the quantum stochastic approach. This approach describes the evolution
of the qubit state conditioned on a particular realization of current through the detector in
the form of a quantum trajectory (stochastic master equation). We have presented results for
both an ideal and a non-ideal measurement using a low transparency QT device. In the ideal
case, our results are consistent with those obtained by other methods [19, 20]. Non-ideal
measurement is modelled by an equivalent circuit. Previously, detector non-ideality has only
been considered phenomenologically [22]. Their results can be derived using the stochastic
approach; however, we leave the presentation of this for elsewhere to avoid unnecessarily
complicating this paper.

We point out that the current noise power spectrum can be used as a diagnostic tool to
detect information about the qubit dynamics and the influence of the parasitic components. In
general, the non-ideal circuit components increase the current noise. The influence of the non-
ideal circuit components on the features of the current noise spectrum that provide information
about the qubit is greatest for the case of strong coupling between the qubit dots, when it is
difficult to obtain information about the quantum processes within the qubit in a non-ideal
measurement. We conclude that the current noise spectrum may be used to determine the
limits of applicability of the ideal model to a realistic measurement.
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